$$f(x) = \begin{cases} -2x - 2, & -5 < x < 0\\ -2, & x \ge 0 \end{cases}$$

The function increases at a constant rate of $\frac{a}{b}$ and the y-intercept is (0, c)

A3

Each input value, x, is squared and then 3 is added to the result. The domain of the function is $[0, \infty)$

A5

<i>x</i>	y
-2	-3
2	3
0	0
6	5
4	4
4	-2
$-\overline{3}$	

A6 $y = 3^x$

A7

<i>x</i>	у
-5	-125
-3	-27
-1	-1
1	1
3	27
5	125

A8

A9

A10

Yasmin started a savings account with \$5. At the end of each week, she added \$3. This function models the amount of money in the account for a given week.

B1

$$y = \log_3 x$$

 $f(x) = \begin{cases} \frac{2}{3}x, & -3 < x < 3\\ 2x - 4, & x > 3 \end{cases}$

The x-intercept is (c, 0) and the

slope of the line is $\frac{b}{a}$.

x	у
-216	-6
-64	-4
-8	-2
0	0
8	2
64	4
216	6

x	y
3	0
4	1
7	2
12	3
19	4
28	5
39	6

Β7

B8

x	у
-2	-3
-1	-2
0	1
1	6
2	13

The function is continuous and grows by an equal factor of 5 over equal intervals. The y-intercept is (0, 1)